320412 (20)
 $B E$ ($4^{\text {th }}$ Semester)
 Examination, April-May, 2021
 Branch: Civil
 FLUID MECHANICS - II

Time Allowed : Three Hours
 Maximum Marks : 80
 Minimum Pass Marks : 28

Note : All questions carry equal marks. Attempt any two
questions from (b), (c) \& (d).

Unit-I
Q. 1. (a) What is free turbulence ?
(b) The velocity of flow in a rough 10 cm diameter pipe is found to increase 10% as a pitot tube is moved from a point 1.5 cm from the wall to a point 3.0 cm from the wall. Estimate the relative roughness $\frac{r_{0}}{\epsilon}$ and friction factor f for the pipe. 7
(c) Explain in brief Colebrook-White equation.
(d) A 25 cm diameter C.I. pipe $\left(\epsilon_{0}=0.15 \mathrm{~mm}\right)$ conveys water ($\boldsymbol{u}=1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{sec}$) with a hydraulic gradient of 0.025 . Estimate the discharge in the pipe and the power required to pump this rate over 100 m of pipeline. $\mathbf{7}$

Unit-II

Q. 2. (a) What do you understand by boundary layer
thickness ?
(b) Find out the displacement and momentum
thicknesses for given velocity profiles :

$$
\frac{u}{u}=2 \eta-\eta^{2}
$$

where $\eta=\left(\frac{y}{\delta}\right)$
(c) Discuss in brief the drag force on sphere. 7
(d) A flat plate 2 m long and 1.5 m wide is towed
at $30 \mathrm{~km} / \mathrm{h}$ in water. The drag and lift
coefficient are found to be 0.20 and 0.60
respectively. Calculate : 7
(i) the resultant force on the plate and
(ii) the power required to keep the plate in motion.

Unit-III

Q. 3. (a) What is specific energy ?
(b) Water flows at a velocity of $1 \mathrm{~m} / \mathrm{sec}$ and a
depth of 2.0 m in an open channel of
rectangular cross-section 3.0 m wide. At a
certain section the width is reduced to 1.80
m and the bed is raised by 0.65 m . Will the
upstream depth be affected ? If so to what
extent?
(c) Prove that for gradually varied flow
equation : 7

$$
\frac{d y}{d x}=\frac{S_{0}-S_{e}}{1-F^{2}}
$$

(d) A hydraulic jump occurs in a rectangular
channel and the depths of flow before and
after jump are 0.5 m and 3.0 m . Calculate : 7
(i) Critical depth
(ii) Power lost/width of channel

Unit-IV

Q. 4. (a) What is water hammer ?
(b) The water is flowing with a velocity of $1.5 \mathrm{~m} /$ sec in a pipe of length 2500 m and of diameter 500 mm . At the end of the pipe, a valve is provided. Find the rise in pressure if the valve is closed in 25 seconds. Take the value of $C=1460 \mathrm{~m} / \mathrm{sec}$. 7
(c) Explain in brief Buckingham's π theorem for dimensional analysis.
(d) A pipe of diameter 1.5 m is required to transport an oil of sp. gr. 0.90 and viscosity
3×10^{-2} poise at the rate of 3000 litre/s.

Tests were conducted on a 15 cm diameter
pipe using water at $20^{\circ} \mathrm{C}$. Find the velocity
and rate of flow in the model. Viscosity of
water at $20^{\circ} \mathrm{C}=0.01$ poise. 7

Unit-V

Q. 5. (a) What is turbine ? 2
(b) What do you understand by the characteristic
curves of turbine? Name the important types
of characteristic curves. 7
(c) A turbine is to operate under a head of 25 m
at 200 r.p.m. The discharge is 9 cumec. If the
efficiency is 90%, determine the performance
of the turbine under a head of 20 metres. 7
(d) Explain in brief the classification of pumps. 7

